NOTES ON GRAPH-CONVERGENCE FOR MAXIMAL MONOTONE OPERATORS
نویسندگان
چکیده
منابع مشابه
On the Convergence of Maximal Monotone Operators
We study the convergence of maximal monotone operators with the help of representations by convex functions. In particular, we prove the convergence of a sequence of sums of maximal monotone operators under a general qualification condition of the Attouch–Brezis type.
متن کاملStrong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings
We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...
متن کاملOn Gossez type (D) maximal monotone operators
Gossez type (D) operators are defined in non-reflexive Banach spaces and share with the subdifferential a topological related property, characterized by bounded nets. In this work we present new properties and characterizations of these operators. The class (NI) was defined after Gossez defined the class (D) and seemed to generalize the class (D). One of our main results is the proof that these...
متن کاملImplicit eigenvalue problems for maximal monotone operators
where T is a maximal monotone multi-valued operator and the operator C satisfies condition (S+) or (S̃+). In a regularization method by the duality operator, we use the degree theories of Kartsatos and Skrypnik upon conditions of C as well as Browder’s degree. There are two cases to consider: One is that C is demicontinuous and bounded with condition (S+); and the other is that C is quasibounded...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2010
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s000497271000184x